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A new boundary integral formulation is presented for the evaluation of the noise radiated
in a uniform medium by generic sources. To use the method one requires knowledge of
the pressure, velocity, and density disturbances on a smooth closed surface surrounding
the source, and to assume that the propagation is linear outside the surface itself. When
applied to the prediction of transonic rotor noise the method can be used in the same
manner as the Kirchhoff approach, but the new integral equations are derived without
requiring the non-penetration condition in the Ffowcs Williams–Hawkings equation. The
method is therefore referred as The Kirchhoff–FWH. The main advantage of the proposed
formulation in respect of the Kirchhoff method is that it does not require the knowledge
of the surface pressure normal derivative. Additionally, it can be applied also for bodies
with permeable surfaces, while the classical FWH equation is not valid in this case. Two
different formulations are presented, which differ in the way in which a time derivative is
handled, and some general issues on the numerical efficiency of the two formulations are
addressed. Comparisons with experiments, and with Kirchhoff and FWH methods, are
presented for a hovering rotor in transonic conditions at various tip Mach numbers.

7 1997 Academic Press Limited

1. INTRODUCTION

In recent years, reduction of helicopter external noise has received a great deal of attention
from industry, because of the more stringent certification rules and the increased sensitivity
of the community and operators. The availability of fast and robust prediction codes is
clearly a required step towards the development of quieter helicopters. Nowadays two
different large groups of methods are available, one based on the Computational
AeroAcoustics approach (CAA) and the other based on integral formulations. The first
method permits one to solve at the same time both the aerodynamic and aeroacoustic
problems, and is based on the solution of the fluid motion equations by classical field
methods (finite volume, finite difference and finite elements) [1]. The main problem of CAA
is that, in order to avoid the introduction of excessive dissipation, the required computer
resources increase greatly with observer distance, and nowadays the solution can be
obtained at a reasonable cost only for observers at a distance of about three times the rotor
radius. The distances that are usually required in realistic calculations are, however, two
or three orders of magnitude greater than the rotor radius, and, even with increase in
computer speed, it is certainly not practical to apply CAA methods directly for these
distances. The integral methods, instead, require knowledge of the aerodynamic flow field
around the rotor, and permit one to obtain the acoustic pressure at any point of the field
by executing a certain number of integrals. One of the interesting aspects of integral
methods is that the required computational time is independent of the observer distance.
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Typical calculations of rotor noise are therefore executed in two steps; in the first one an
aerodynamic code based on CFD/CAA or BEM methods is used to evaluate the
aerodynamic field, and then an integral formulation is applied to propagate the pressure
disturbance to the far field. It is important to note that the computational time required
by the integral methods is usually much lower than the time required to obtain the
aerodynamic solution. Several integral methods for acoustic applications are nowadays
available including the classical Ffowcs Williams–Hawkings (FWH) and Kirchhoff
equations, together with other methods based on the velocity potential, or on linear and
non-linear versions of the FWH and Kirchhoff equations (see, e.g., references [2–4]). The
FWH formulation (see, e.g., references [5–7]) permits one to compute the pressure
disturbance at any point of the field once some aerodynamic quantities are known on the
blade surface and in the volume around it. Sometimes FWH is referred to as a linear
approach simply because in the great part of the implementations the volume quadrupole
terms, that take into account the non-linearities, are neglected. However, once the volume
terms are properly considered [8] good results can be obtained in transonic conditions (see,
e.g., references [9–13]). On the other hand, the Kirchhoff formulation, as obtained by
Farassat and Myers [14], permits one to solve linear wave propagation problems once some
flow quantities are given on a closed fictitious surface surrounding the source. In order
to be applied to transonic rotor noise [15–18], the surface has to be placed at a sufficient
distance from the rotor in order to ensure that the propagation is governed by the linear
wave equation outside the surface itself. The main advantage in respect to the FWH
approach is that the acoustic calculation is generally faster, since only surface integrals
have to be evaluated.

From a physical point of view it is important to realize that the Kirchhoff formula is
valid for any phenomenon governed by the linear wave equation (optics, acoustics,
electromagnetism, etc.), while the FWH equation is specialized for aeroacoustics problems.
As a consequence, the Kirchhoff equation is written in terms of a single fluid quantity (the
pressure disturbance p'= p− p0), while FWH requires not only p' but also the fluid
density r and the fluid perturbation velocity u. In order to reconstruct the propagation,
the Kirchhoff formulation requires some further information that is provided by
knowledge of the pressure normal derivative 1p'/1n. The necessity of specifying 1p'/1n
can be a disadvantage for rotorcraft problems, since, if discontinuities are present, the
numerical evaluation of 1p'/1n can introduce undesired smoothing. The other difference
between the two formulations is that the surface integrals of the FWH equation are
executed on a well defined physical surface (the surface of the blades), while the Kirchhoff
surface is completely fictitious, being subject to the restrictions only of being smooth and
of enclosing the source with all the non-linear terms. Except for the above limitations, the
surface can be placed anywhere in the field, and can have a generic motion eventually
different from the motion of the source itself. The degrees of freedom allowed in the
definition of the Kirchhoff surface certainly represent an advantage over the FWH
approach. For example, in calculation of high speed rotor noise in a delocalized condition,
it is possible to use a nonrotating Kirchhoff surface in order to avoid problems with
surfaces in supersonic motion.

A question now arises: Is it possible to develop an integral formulation specialized for
aeroacoustics problems, but that permits the same flexibility of the Kirchhoff formulation?
The answer is yes, and in this work such a new formulation is derived and applied to
transonic rotor noise problems. Since the formulation combines aspects of both the FWH
and Kirchhoff approaches, it is here referred as the Kirchhoff–FWH formulation
(KFWH).
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Two different formulations are presented which differ in the way in which time
derivatives are handled, and which can be compared respectively with Farassat’s
formulations 1 and 1A. An analysis of the numerical efficiency of the two approaches
shows how the methods that do not require any numerical evaluation of time derivatives
(1A) are about twice as fast.

Finally, some comparisons with classical Kirchhoff, FWH and experimental results are
shown for the UH-1H rotor in hover for tip Mach numbers up to 0·95.

2. THE FWH APPROACH

In order to obtain the new formulation, the derivations of the FWH and Kirchhoff
equations are outlined here, with the aim of pointing out the differences and similarities
between the two approaches.

Consider a generic body immersed in a fluid, and the surface Sb of which is described
by the equation fb(x, t)=0, where fb Q 0 for points inside the body (for simplicity, it is also
assumed that the function fb is scaled in such a way that =9( fb)==1 for fb =0). The problem
can be modelled by replacing the body by fluid at rest (p'=0, r= r0, u=0), and the
governing equations can be written as

1r

1t
+

1

1xi
(rui)=0,

1

1t
(rui)+

1

1xj
(Pij + ruiuj)=0, (1, 2)

where Pij is the fluid compressive stress tensor, r is the density, and ui is the fluid
perturbation velocity. Equations (1) and (2) represent respectively mass and momentum
conservation, and are valid, with the respective boundary conditions, in the two regions
separated by the surface Sb . In order to obtain a single equation that is valid both for fb Q 0
and fb q 0, the surface Sb has to be considered as a discontinuity surface, and all the fluid
quantities have to be regarded as generalized functions. Exploiting the properties of
generalized derivatives one can obtain a non-homogeneous version of the continuity
equation that can be written as [5, 22].

1r

1t
+

1

1xi
(rui)=r0un d( fb)+ (r− r0)(un − vn) d( fb). (3)

The second term on the right side disappears in the classical formulation, since the
non-penetrating condition states that (un − vn)=0. In a similar way, the generalized version
of the momentum equation can be obtained:

1

1t
(rui)+

1

1xj
(Pij + ruiuj)=P'ijnj d( fb)+(pui)(un − vn) d( fb). (4)

Here P'ij =Pij − p0dij is the perturbation stress tensor, and dij is the Kronecker delta. Also,
in this case, the second term on the right side vanishes, since flow is not allowed across
Sb . It is now possible to assemble equations (3) and (4) by following a standard procedure
(see, e.g., references [6, 19]). The first step is to take the generalized derivative of
equation (4) with respect to xi and to subtract the generalized time derivative of
equation (3). Then the term c212r/1xi1xi can be subtracted from the result of the previous
operations, c being the constant speed of sound in the undisturbed medium. With some
further manipulations, and considering that p0 and r0 are constant across Sb , the final form
of the FWH equation can be written as

q 2[c2(r− r0)]=
1

1t
[r0un d( fb)]−

1

1xi
[P'ijnj d( fb)]+

12Tij

1xi1xj
, (5)
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where Tij =P'ij + ruiuj − c2(r− r0)dij is Lighthill’s equivalent stress tensor. If the
perturbations are small, the term c2(r− r0) can be replaced by p', and therefore
equation (5) can be used to evaluate the pressure disturbance. It must be pointed out
that the hypothesis of small disturbances has to be valid only at the observer location,
while no restriction in posed near the body. By using a standard Green function approach,
equation (5) can be rewritten as an integral equation, in which the first two terms on the
right side represent integrals on the surface Sb of the body (thickness and loading), and
the last term generates a volume integral that describes the quadrupole contribution.

3. THE KIRCHHOFF APPROACH

In order to understand better the common aspects of the two approaches, one starts the
derivation of the Kirchhoff formulation a little upstream of what is usually done. Also in
this case a body B is considered, the surface Sb of which is described by the equation fb =0,
and immersed in a fluid medium. The fluid motion is clearly governed by the continuity
and momentum equations (1) and (2). Now consider a generic closed and smooth surface
S of arbitrary shape and motion, defined by f(x, t)=0 (=9( f )==1 for f=0), and let us try
to evaluate the noise radiated by the body B for observers placed outside S. If the surface
S is far enough from the body B, then the fluid outside S can be considered to be inviscid,
and the disturbances small. With these hypotheses, equations (1) and (2) can be rewritten
as the standard wave equation

1
c2

12p'
1t2 −92p'0q 2p'=0. (6)

The sound propagation outside S can therefore be modelled by replacing the volume inside
S with fluid at rest (p'=0), and introducing a discontinuity surface across S. At this point,
by exploiting the properties of generalized derivatives, it is possible to obtain the
non-homogeneous version of equation (6) [14], that is exactly the sought-for Kirchhoff
equation:

q 2p'=−01p'
1n

+
Mn

c
1p'
1t 1 d( f )−

1
c

1

1t
[Mnp' d( f )]−

1

1xi
[p'ni d( f )]. (7)

Here n is the unit vector normal to the surface S and pointing outwards, and Mn = vini/c
is the Mach number in the normal direction. The integral formulation can be easily
obtained from equation (7) by using a Green function approach.

4. THE FIRST KFWH EQUATION

From the above derivations it is clear that the FWH and Kirchhoff formulations can
be seen as different descriptions of the same phenomenon, since they can be obtained by
starting from the same physical problem described by the same equations (1) and (2). The
differences between the two formulations are due to some choices that are made in the
derivation process. The first choice is that for the Kirchhoff equation some simplifying
hypotheses are introduced in the early stages of derivation, while no assumption is made
for the FWH equation. The second difference is that the discontinuity surface S is imposed
to be coincident with the surface Sb of the body in the FWH equation, while no limitation
is given for S in the Kirchhoff method. A new formulation, which combines the positive
aspects of both the FWH and Kirchhoff approaches, can at this stage be obtained in a
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few steps, and the procedure for its derivation can be interpreted in two different ways.
On the one hand, one can think of following the same approach used for the derivation
of the FWH equation, using, however, a fictitious discontinuity surface S that is not
necessarily coincident with Sb . On the other hand, one can think of starting from the
continuity and momentum equations and following the same procedure used in the
derivation of Kirchhoff formulation with the difference that the simplifying hypotheses are
no longer introduced. Clearly, from a practical point of view the derivation is exactly the
same. Starting from equations (1) and (2), one introduces therefore a generic discontinuity
surface S, and replaces the volume inside S by fluid at rest (p'=0, r=0, u=0). The
non-homogeneous versions of equations (1) and (2) are simply obtained from equations
(3) and (4) once fb is replaced by f. It is however, very important to note that, since the
surface S is fictitious, the non-penetration condition is no longer required, and, in order
to obtain correct results, one has to allow a fluid flow across S. In particular the flow can
be due both to the fluid perturbation velocity (un $ 0), and to the motion of the surface
(vn $ 0), with the net flow across S being given by the difference (un − vn). Equations (3)
and (4) can therefore be assembled by adopting the same procedure as used above except
only that now the terms containing (un − vn)=0 can no longer be neglected. The result can
be written as

q 2[c2(r− r0)]=
1

1t
[r0un d( f )]−

1

1xi
[P'ijnj d( f )]+

12Tij

1xi1xj

+
1

1t
[(r− r0)(un − vn) d( f )]−

1

1xi
[rui(un − vn) d( f )], (8)

where Tij =P'ij + ruiuj − c2(r− r0)dij is again Lighthill’s equivalent stress tensor. Equation
(8) can be interpreted as a modified version of the FWH equation extended to the case
in which flow is allowed across the discontinuity surface. Clearly, if S is concident with
the surface Sb of an impenetrable body, then the flow is zero and the classical FWH
equation is obtained.

It is interesting to note that equation (8) can be rearranged in order to have the
same formal aspect as the classical FWH equation. Upon defining the quantities Ui

and Lij as

Ui = ui +[(r/r0)−1](ui − vi), Lij =P'ij + rui(uj − vj), (9, 10)

equation (8) can be rewritten as

q 2[c2(r− r0)]=
1

1t
[r0Un d( f )]−

1

1xi
[Lijnj d( f )]+

12Tij

1xi1xj
, (11)

which is identical to the classical FWH equation if un is replaced with Un and P'ij with Lij .
The terms Ui and Lij introduced here can be interpreted respectively as a modified velocity
and a modified stress tensor, which take into account the flow across S. It is thus possible
to conclude that the FWH equation is still valid for permeable surfaces if the modified
velocity and stress tensor are introduced.

The Green function G of the unbounded three-dimensional space is defined as
G= d (g)/r, where r= >x− y>, g= t− t− r/c, and where x and y represent,
respectively, observer and source positions, and t and t observer and source times. By
executing a convolution of equation (8) with the Green function G, it is possible to recast
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the equation (11) in an integral form, that, for a non-deformable surface S, can be
written as

4pc2(r− r0)=
1

1t gS $r0un +(r− r0)(un − vn)
r=1−Mr = %ret

dS

+
1
c

1

1t gS $P'nr + rur(un − vn)
r=1−Mr = %ret

dS+gS $P'nr + rur(un − vn)
r2=1−Mr = %ret

dS

+
1
c2

12

1t2 gV $ Trr

r=1−Mr =%ret

dV+
1
c

1

1t gV $ 3Trr −Tii

r2=1−Mr =%ret

dV

+gV $ 3Trr −Tii

r3=1−Mr =%ret

dV, (12)

where Mr = viri/c is the Mach number in the observer direction, Trr =Tijrirj , and
Tii =T11 +T22 +T33. Also, V is the volume external to the surface S ( fq 0), and the
symbol []ret means, as usual, evaluation at the retarded time t*= t− r/c. In order to obtain
equations (12), the formula [7, 20]

1

1xi $d(g)
r %ret

=−
1
c

1

1t $ri d(g)
r2 %ret

−
ri d(g)

r3 (13)

has been used to transform the space derivative, which appears in the loading term into
time derivative. A similar, but more complex expression, that was first obtained by
Farassat and Brentner [8], was also used to execute the analogue transformation for the
quadrupole term. Equation (12) can be seen as a boundary integral equation that, for any
point external to a generically moving surface S, relates the density disturbance to the
values of pressure, velocity and density on the surface itself, and to the Lighthill stress
tensor in the volume external to the surface. This equation has been derived directly from
the equations of conservation of mass and momentum without any further assumptions,
and so can be applied to a generic surface independently of whether or not the propagation
is linear outside the surface. If the surface S is placed on the body, and the body itself
is assumed to be impenetrable, then the classical FWH equation is obtained and the
non-linear propagation effects are taken into account by the quadrupole volume terms.
By moving the surface S away from the body a sort of mixed formulation is obtained, in
which part of the non-linearities is taken into account by the quadrupole volume terms,
and part by the surface integrals. At the end, if the surface is far enough from the body,
the Lighthill stress tensor outside S can be neglected and, by using the relation
c2(r− r0)=p', valid if perturbations are small, equation (12) can be rewritten as

4pp'=
1

1t gS $r0un +(r− r0)(un − vn)
r=1−Mr = %ret

dS

+
1
c

1

1t gS $P'nr + rur(un − vn)
r=1−Mr = %ret

dS+gS $P'nr + rur(un − vn)
r2=1−Mr = %ret

dS. (14)
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This formula, together with equation (19), is the main result of this paper, and is here
referred to as the first Kirchhoff–FWH equation (KFWH).

5. ANALYSIS OF THE FORMULATION

As has been seen, two hypotheses are required for the simplification of equation (12)
into equation (14): the first assumption requires that the quadrupole term outside S be
negligible, and the second one requires that the disturbances near the observer be small
enough, in such a way that c2(r− r0) can be replaced by p'. In order to neglect the
quadrupole terms the perturbations, however, have to be small in all of the volume V, and
this is certainly the more restrictive assumption Compared with those of the classical
Kirchhoff approach, the hypotheses required seem to be similar, since both of the
formulations can be used only in the case of small perturbations. It is important to point
out that the complete KFWH formulation (equation 12), including also the volume terms,
is valid also in the case of non-small perturbations; allowing, for example, the presence
of a gross fluid flow across S. However, if one wants to neglect the volume terms one has
to impose the small perturbation hypothesis, restricting in this way the validity of the
formulation to the case of negligible fluid flow, as happened in the classical Kirchhoff
formulation. It is interesting to note that the KFWH formulation can be written in a
simplified form upon considering that some of the integrands are of second order in respect
to the fluid perturbations, and therefore they can be neglected in the case of small
perturbations. The result can be written as

4pp'=
1

1t gS $r0un − p'/c2vn

r=1−Mr = %ret

dS

+
1
c

1

1t gS $P'nr − r0urvn

r=1−Mr = %ret

dS+gS $P'nr − r0urvn

r2=1−Mr = %ret

dS. (15)

The differential form of this equation, restricted to the case of an impermeable surface S
coincident with Sb (un = vn), was derived by Myers and Hausmann [21] for the study of
the convergence properties of some singular integrals that appear in the Kirchhoff equation
when used for scattering or aerodynamic applications. In reference [21], the authors start
from the classical Kirchhoff equation and use the linearized inviscid mass and momentum
equations in order to replace respectively 1p/1n and 1p/1t. The equation obtained is
therefore written in terms of u and p and does not contain 1p/1n.

The differences between the various formulations can also be interpreted in terms of the
fluid quantities involved in the integral representations. The first step is the classical
Kirchhoff equation that is valid for any phenomenon governed by the linear wave
equation, independently of the nature of the phenomenon itself, and is written in terms
of a single physical quantity. If one wants to avoid the presence of the pressure normal
derivative one has to specialize the formulation for aeroacoustic applications by making
use of the linearized mass and momentum equations, obtaining in this way equation (15)
which, however, is written not only in terms of p but also of u. As a last step one can make
use of the complete mass and momentum equations and derive equation (12) which, when
the quadrupole terms are properly considered, is also valid in the presence of flow. On the
other hand, if one neglects the volume integrals the KFWH formulation is valid for the
same conditions as the classical Kirchhoff one. The main practical advantage is that
KFWH contains only quantities that are directly available from CFD codes, without the
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need of executing derivation of CFD data. This aspect can be of a certain importance if
shocks are present in the field around the surface S, as happens in delocalized conditions.
In this case, in fact, the evaluation of the pressure derivative has to be executed with great
care (for example, by introducing some sort of upwinding consistent with the formulation
used in the CFD code) in order not to degrade the quality of the acoustic result. The same
results could also be obtained by using the linearized continuity equation to replace 1p/1n
in the Kirchhoff formulation (or, if one prefers, using equation (15)). As to the
computational cost of the new formulation it should be almost identical to that of the
Kirchhoff approach except that for the storage requirements, KFWH requires the storage
of five scalar quantities (r, p and three components of u) for each node, while only two
quantities (p and 1p/1n) are required by Kirchhoff.

In respect to FWH, the first clear advantage of KFWH is that, like the Kirchhoff
method, it permits one to avoid the evaluation of the volume integrals, and therefore
reduces the computational cost of the acoustic calculations, as a volume integration is
reduced to a surface one. Another important aspect is that, for a surface S coincident with
Sb , the new formulation can be applied to the prediction of the noise radiated by rotating
blades when a fluid flow exists across Sb ; for example, when suction or injection devices
are applied for boundary layer control, or when blades with porous surfaces are used. On
the other hand, the classical FWH equation is not valid in these cases, since it is derived
with the assumption that no flow exists across S. A final aspect to be mentioned is that
KFWH can be applied to any radiation problem, whether the source is a body in motion
in the fluid, or any other mechanism. In fact, once p', u and r are known on a proper
surface surrounding the source, the method can be applied independently of the source
itself.

6. THE SECOND KFWH EQUATION

The presence, in the integrals of equation (14), of time derivatives of quantities
depending on the retarded time is a critical aspect that can generate problems if the
numerical derivation is not executed with great care. In fact, in order to execute
numerically the time derivative, there is the need to evaluate the retarded times twice, and
this fact, joined with the higher accuracy required in each retarded time evaluation, almost
doubles the computational time in respect of other methods in which the numerical
derivative does not appear (see the Appendix). The time derivatives can be moved
inside the integrals by following the same procedure used by Farassat in deriving his
formulation 1A [7, 22].

Taking in account that, for a generic function Q=Q(y, t),

1

1t
[Q(y, t)]ret =$ 1

1−Mr

1Q
1t%ret

(16)

and using the relations

ṙ=−vr , ṙi =−vi , (17)

r̂�i =
1

1t 0ri

r1=−vi + r̂ivr

r
, (18)
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where r̂i = ri/r, one can rewrite equation (14) as

4pp'=gS $r0(U� ini +Uiṅi)
r=1−Mr =2 %ret

dS+gS $ r0UiniK
r2=1−Mr =3%ret

dS

+
1
c gS $ F� ir̂i

r=1−Mr =2%ret

dS+gS $Fir̂i −FiMi

r2=1−Mr =2%ret

dS+
1
c gS $ Fir̂iK

r2=1−Mr =3%ret

dS,

(19)

where

K=M� ir̂ir+Mrc−M2c, Fi =Lijnj (20, 21)

Even if this formulation is more complex than equation (14), it has the great advantage,
from the computational point of view, that it does not require any numerical evaluation
of derivatives of quantities depending on the retarded time.

Another useful version of formula (14) can be obtained if the integration is executed
on the acoustic surface S, leading to [20]

4pp'=
1

1t gS $r0un +(r− r0)(un − vn)
rL %ret

dS

+
1
c

1

1t gS $P'nr + rui(un − vn)
rL %ret

dS+gS $P'nr + rui(un − vn)
r2L %ret

dS, (22)

where L=z1−M2
n −2Mn cos u. It is possible to show that, with an appropriate

numerical approach [16, 23–26], this formula has the great advantage that can be applied
when the surface S is moving supersonically, while equations (14) and (19) present a
singularity in this case.

7. RESULTS

In order to test and validate the KFWH approach, an existing code for the evaluation
of Kirchhoff and FWH integrals has been improved by adding some new modules. The
code consists of a series of common modules (input–output, kinematics, retarded time
evaluation, etc.) that execute the tasks that are independent of the specific acoustic
formulation, and of some specific modules devoted to the evaluation of the different
integral kernels. In particular, the code is able to evaluate the FWH thickness, loading and
quadrupole terms in the subsonic case, and the Kirchhoff integrals for both stationary and
subsonic moving surfaces. The integrals in each formulation can be evaluated with three
different methods: integration on the physical surface, with numerical evaluation of the
time derivatives; integration on the physical surface, with analytical evaluation of the time
derivative (Farassat’s formulation 1A and extensions); and integration on the acoustic
surface, with numerical evaluation of the time derivatives. Recently, the possibility of
evaluation of the Kirchhoff integrals for supersonically moving surfaces, with integration
on the acoustic surface and evaluation of multiple emission times, also has been added [24].
On each surface or volume element, a first order isoparametric description of both
geometry and aerodynamic data is used, and the integrals are evaluated by using Gaussian
quadrature.
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The KFWH formulation has been introduced in the code by adding some modules that
permit the evaluation of the integral kernels of equations (14) and (19), and the input of
the relative aerodynamic data. The code has been used to execute some acoustic
calculations for the well known two-bladed untwisted UH-1H model rotor in non-lifting
hovering conditions, for which experimental results are available for various tip Mach
numbers. The purpose of the tests was mainly to compare the capabilities of the KFWH
approach in respect to the classical Kirchhoff and FWH formulations. The emphasis was
therefore placed not only on the direct comparison with experimental results, which clearly
depends also on the quality of the CFD solution used as input for acoustic calculations,
but also on the relative results achievable by the different acoustic methods when the same
aerodynamic solution is used to provide the input data. Three different conditions were
therefore chosen, corresponding to three different tip Mach numbers, namely 0·85, 0·90
and 0·95, and for each condition the same CFD results have been used to provide the
different input data required by the different acoustic formulations. The three CFD
solutions were provided by DLR, and have been obtained with an Euler code for hovering
rotors developed at DLR [27]. The code is an explicit finite volume Euler solver that adopts
a scheme that reduces to a second order central difference on a Cartesian grid with constant
grid sizes, and is second order accurate on smoothly stretched meshes. In order to avoid
spurious oscillations, a blend of first and third order dissipative terms is introduced. An
explicit Runge–Kutta time-stepping scheme is used, and a multi-grid algorithm is
implemented in order to accelerate convergence. The results for the three Mach numbers
have been obtained with the same grid of 128×41×97 elements (chord×vertical ×
span). Due to the symmetry of the problem, only one blade is modelled with the imposition
of proper periodicity conditions. A section in the x–y plane of the aerodynamic mesh is
shown in Figure 1 together with one of the fixed Kirchhoff surfaces used in the calculations.
It is possible to see that the outer portion of the CFD mesh has a cylindrical

Figure 1. CFD and Kirchhoff meshes: a section of the aerodynamic mesh along the plane z=0, together with
the fixed cylindrical Kirchhoff surface.
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Figure 2. UH-1H: a comparison of results from the rotating surface KFWH method (——), the rotating
surface Kirchhoff method ( - - - - ) and experiments (W), for M=0·85.

shape, and this facilitates the interpolation on the fixed Kirchhoff surface. The first result
reported in Figure 2 refers to the case M=0·85, and shows the pressure disturbance for
an observer placed in the rotor plane at a distance equal to 3·09 times the rotor radius
R. A Kirchhoff surface surrounding the blade and rotating together with it has been
extracted from the nodes of the aerodynamic mesh to obtain the surface sketched in
Figure 4. Due to the symmetry of the problem (non-lifting condition), only the upper
portion of the surface was considered which gave a total of 1023 nodes (31 vertical×33
span). The outer boundary of the mesh was placed at a distance of 1·15R. The mesh
obtained was then used to evaluate the pressure disturbance with both the KFWH and
the Kirchhoff approach, by using the CFD data available at each node to compute the
input data required by the two formulations. In the case of the Kirchhoff approach,
another surface adjacent to the original one has been used to extract the pressure normal
derivative. The pressure disturbance obtained with the KFWH approach is represented in
the figure by a solid line, while the dashed line represents classical Kirchhoff, and the large

Figure 3. UH-1H: a comparison of results from the fixed surface KFWH method (——), the fixed surface
Kirchhoff method ( - - - - ), and experiments (W), for M=0·85.
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Figure 4. Rotating Kirchhoff: a view of the rotating Kirchhoff surface extracted from the aerodynamic mesh,
together with a portion of the blade.

dots represents the experimental results. The same case is considered in Figure 3, but the
calculation has been executed by using a cylindrical Kirchhoff surface fixed in respect to
the air and surrounding the entire rotor (as the one sketched in Figure 1). The height of
the cylinder was about one rotor radius and this permitted one to neglect the contributions
of the upper and lower bases of the cylinder itself. The cylindrical surface was discretized
with 512 equally spaced points along the azimuth and 31 points in the vertical direction
clustered near the rotor plane (also, in this case, only the upper portion of the surface was
discretized due to the symmetry along the rotor plane). Since the CFD data were given
in the rotating frame, a transformation was required in order to obtain them in the fixed
frame. The operation is made easier by the cylindrical shape of the outer part of the
aerodynamic mesh. In particular, a bilinear interpolation among the nodes of the
aerodynamic mesh that form the lateral surface of the cylinder was used. As a result, for
each node the unsteady aerodynamic data were obtained in 512 equally spaced time steps
along the rotation period. In the case of the Kirchhoff approach, another cylindrical
surface close to the original one was used to evaluate 1p/1n. Finally, the same case is
considered also in Figure 5, where the results obtained with the KFWH approach, applied
to the rotating Kirchhoff surface are compared with the results of the FWH formulation,
including thickness, loading and quadrupole terms. In particular the quadrupole terms are
evaluated by using a mesh of 33×31×18 nodes (chord×vertical× span). It is
important to note that the outer boundary of the mesh for the quadrupole calculation was
coincident with the surface used for the KFWH calculation. This means that the two
formulations should provide identical results independently of whether or not the
integration domain encloses all of the non-linear region, since the two approaches neglect
exactly the same terms. It is possible to see from Figures 2, 3 and 5 that all the results
obtained compare well with experimental results; but, more importantly, also compare
very well with the results of the Kirchhoff and FWH approaches (only a slight difference
exists between the Kirchhoff and KFWH results for the moving surface). It must be
pointed out that in the above calculations the formulation (19) was used, but almost
indistinguishable results can be obtained with formulation (14) once the proper dt are
chosen for derivation. In this case, however, the computational cost is greater, as shown
in the Appendix.

Similar results can also be obtained for the other two tip Mach numbers. In
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Figure 5. UH-1H: a comparison of results from the rotating surface KFWH method (——), the FWH
thickness+ loading+quadrupole method ( - - - - ) and experiments (W), for M=0·85.

Figures 6 and 7 the results for M=0·90 and M=0·95 are given for a fixed cylindrical
surface of radius equal to 1·3R. Also, in these cases, the agreement with experiment
is satisfactory, and the differences in the slopes of the pressure disturbances are
probably due to an excess of dissipation introduced in the aerodynamic solutions. What
is important, however, is that the KFWH and Kirchhoff methods produce almost the
same results.

As a last result, KFWH (Figure 8) and Kirchhoff (Figure 9) approaches are compared
in respect to the convergence properties in terms of the radius of the cylindrical surface
S. As can be seen, the behaviour of the results seems to be very similar for the two
formulations. In particular, for r/R=1·1 the surface is too near to the blade and some
non-linear terms are neglected, while for r/R=1·3 convergence is practically achieved and
the results are almost identical to those obtained for r/R=1·4.

Figure 6. UH-1H: a comparison of results from the fixed surface KFWH method (——), the fixed surface
Kirchhoff method ( - - - - ) and experiments (W), for M=0·90.
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Figure 7. As Figure 6, but for M=0·95.

Figure 8. UH-1H: a convergence test for the KFWH method as a function of the outer radial position of the
surface for M=0·90. r/R values: · · · · ·, 1·1; — - - —, 1·2; — —, 1·3; ——, 1·4.

Figure 9. As Figure 8, but for the Kirchhoff method.
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8. CONCLUSIONS

A new boundary integral equation has been presented that permits the evaluation of the
noise radiated by arbitrary sources once pressure, velocity and density disturbances are
known on a smooth closed surface surrounding the source.

The main advantages of the proposed approach in comparison to the Kirchhoff
formulation is that it does not require the knowledge of 1p/1n and therefore it can be more
easily interfaced with CFD codes. The new formulation can also be applied when a fluid
flow exists across the surface of the radiating body, making possible, therefore, evaluation
of the noise radiated by blades with porous surfaces or with suction or injection devices;
the classical FWH equation is not valid under these circumstances.

Two different formulations have been presented. In the first one a time derivative
appears outside some of the integrals and has to be evaluated numerically, while in the
second one the derivative is taken inside the integrals and is evaluated analytically. Some
numerical considerations concerning the comparison of these two approaches, but valid
in general for any aeroacoustic formulation, show that the second formulation is about
twice as fast as the first.

Numerical tests reveal that the KFWH method produces almost the same results as the
Kirchhoff method, and also the convergence properties in respect to surface distance from
the source seem to be similar.

Further work has to be performed to assess the accuracy required by the two approaches
in terms of grid definition during the aerodynamic calculation, in order to understand
whether the use of the KFWH formulation could permit one to use a less refined
aerodynamic grid without affecting the accuracy in the acoustic solution.
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APPENDIX: TIME DERIVATIVES

In this Appendix some problems concerned with numerical evaluation of the time
derivatives that appear in equation (14) are addressed. It will be shown that the numerical
evaluation can be handled correctly without affecting the accuracy of the solution, but this
requires a computational cost that is about twice the cost required by formulation (19).
The comparison is made between the first and second KFWH equations, but the analysis
is general, and the results obtained are valid for the comparision of any acoustic
formulation in which the time derivative is evaluated numerically (for example, Farassat’s
formulation 1), with the respective approach in which the derivative is evaluated
analytically (for example, Farassat’s formulation 1A).
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Two main aspects will be addressed: the first one is the accuracy required in the
evaluation of the retarded time in order not to cause problems in numerical evaluation
of the derivative, and the second one refers to the problems that may arise when the
observer is in motion.

.1.  

One of the main problems that makes the numerical evaluation of the time derivatives
in equation (14) difficult is the fact that the quantities inside the integrals depend on the
retarded time. In order to focus on the problem consider, as an example, the numerical
evaluation of the time derivative D(t) of a function Q depending on the retarded time: i.e.,

D(t)=
1

1t
[Q(t)]ret =

1Q(t*)
1t

, (A1.1)

t* being the solution of

t− t+ r(t)/c=0. (A1.2)

For a two-point scheme, the numerically evaluated derivative DN(t) can be written as

DN(t)=
[Q(t2)]ret −[Q(t1)]ret

t2 − t1
, (A1.3)

where D(t)=DN(t)+O(Dt2). The problems arise since equation (A1.2) has no analytical
solution for arbitrary motion, and so it has to be solved numerically, iterating until the
desired accuracy is reached. Let t*1 and t*2 be the exact solutions of equation (A1.2),
respectively for instants t1 and t2, and let o1 and o2 be the errors achieved in the iterative
solution. The estimation DNe of the numerical derivative will be

DNe(t)=
Q(t*2 + o2)−Q(t*1 + o1)

t2 − t1
. (A1.4)

Upon expressing Q(t+ o) as Q(t)+o1Q/1t+O(o2) and taking into account equation (16),
equation (A1.4) can be written, with O(o2) terms neglected, as

DNe(t)=
Q(t*2 )−Q(t*1 )

Dt
+D(t)k 0o2 − o1

Dt 1 , (A1.5)

where Dt= t2 − t1 and k=1−Mr . Upon neglecting now O(Dt2) terms, it is possible to
replace (Q(t*2 )−Q(t*1 ))/Dt by D(t) and write

DNe(t)=D(t) 01+ k
o2 − o1

Dt 1 , (A1.6)

and therefore

bDNe(t)−D(t)
D(t) bE2ok

Dt
. (A1.7)

It is thus possible to see that the relative error in the evaluation of the numerical derivatives
due to the non-exact knowledge of the retarded time is of the order of o/Dt, where o is
the maximum error in retarded time evaluation and Dt is the time step used in the
derivation. Therefore, in order to avoid problems, the maximum error o allowed in the
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evaluation of the retarded time has to be much smaller then the time step Dt used in the
derivation.

.2.   

Now suppose that one wants to evaluate p' for n time instants, and compare the number
of operations required by equation (14) and (19). The surface integrals of equation (14)
can be considered as functions I(x, t) that depend on observer position x and time t, with
x expressed as a function of t. Each term of equation (14) that contains the time derivative
can be written in the form

4pp'= (1/1t){I(x, t)}. (A2.1)

The derivative that appears outside the surface integrals has to be taken strictly with
respect to time with the position kept constant, and so one has to compute the
quantity

(1/1t){I(x, t)}x= constant . (A2.2)

To evaluate this derivative numerically by using a two point scheme, one has to compute
two values of the function I for two different time instants but for the same observer
position. If at the time t0 the observer position is x0, one can write the correct value of
the numerical derivative as

I(x0, t1)−I(x0, t0)
t1 − t0

. (A2.3)

Therefore, if one wants to evaluate p' at n time instants, one needs to evaluate the function
I for 2n pairs (x, t) and to solve equation (A1.2) 2n times. On the other hand, the
formulation (19) requires only n evaluations of the function I, and therefore only n
solutions of equation (A1.2) are required.

It is of interest to note that the simple evaluation of the function I(x(t), t) for the n
instants, followed by the derivation of the time history obtained, will lead to incorrect
results. In this case, in fact, one obtains a numerical evaluation of

(1/1t){I(x(t), t)} (A2.4)

that is different from that of equation (A2.2). The difference between these two results is
given by

s 1I
1xi

1xi

1t
= s 1I

1xi
Vobsi , (A2.5)

and so the error induced is proportional to the observer speed, and is zero only when the
observer is at rest.

.3. 

The main advantage of equation (19) in respect of equation (14) is that it requires half
the retarded time evaluations. In addition the accuracy required in each evaluation can
be lower, since there are no numerical derivatives of quantities depending on the retarded
time, and so each retarded time evaluation can be obtained at a lower cost. The only
disadvantage is that the integrals are slightly more complex and there is the need to
evaluate and store some quantities (such as M� , ẇ and ṅ) that are not required in
formulation (14). For sources in generic motion the solution of equation (A1.2) is usually
the most computational expensive task of an acoustic code, and therefore the
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disadvantages of equation (19) are usually compensated for by the advantages, and in
practical applications equation (19) is about twice as fast as equation (14). The situation
changes if for some specific case the solution of equation (A1.2) can be obtained in a closed
form, and in this case the advantages of equation (19) can be less evident.

The above result can clearly be extended to a generic acoustic formulation, and therefore
it can be concluded that formulations of Farassat’s type 1A (without numerical time
derivative) are about half as expensive than formulations of type 1 (with the numerical
time derivative).


